آشنايي با CPU (ريزپردازنده يا ميكرو پروسسور)


ريزپردازنده واحد پردازش مركزي ( CPU ) يا همان مغز رايانه مي باشد. اين بخش مدار الكترونيكي بسيار گسترده و پيچيده اي مي باشد كه دستورات برنامه هاي ذخيره شده را انجام مي دهد. جنس اين قطعه كوچك (تراشه) نيمه رسانا است. CPU شامل مدارهاي فشرده مي باشد و تمامي عمليات يك ميكرو رايانه را كنترل مي كند. تمام رايانه ها (شخصي، دستي و...) داراي ريزپردازنده مي باشند. نوع ريزپردازنده در يك رايانه مي تواند متفاوت باشد اما تمام آنها عمليات يكساني انجام مي دهند. 


تاريخچه ريزپردازنده

ريزپردازنده پتانسيل هاي لازم براي انجام محاسبات و عمليات مورد نظر يك رايانه را فراهم مي سازد. در واقع ريزپردازنده از لحاظ فيزيكي يك تراشه است. اولين ريزپردازنده در سال ۱۹۷۱ با نام Intel ۴۰۰۴ به بازار عرضه شد. اين ريزپردازنده قدرت زيادي نداشت و تنها قادر به انجام عمليات جمع و تفريق ۴ بيتي بود. تنها نكته مثبت اين پردازنده استفاده از يك تراشه بود، زيرا تا قبل از آن از چندين تراشه براي توليد رايانه استفاده مي شد.
اولين نوع ريزپردازنده كه بر روي كامپيوتر خانگي نصب شد. ۸۰۸۰ بود. اين پردازنده ۸ بيتي بود و بر روي يك تراشه قرار داشت و در سال ۱۹۷۴ به بازار عرضه گرديد. 
پس از آن پردازنده اي كه تحول عظيمي در دنياي رايانه بوجود آورد ۸۰۸۸ بود. اين پردازنده در سال ۱۹۷۹ توسط شركت IBM طراحي و در سال ۱۹۸۲ عرضه گرديد. بدين صورت توليد ريزپردازنده ها توسط شركت هاي توليدكننده به سرعت رشد يافت و به مدل هاي ۸۰۲۸۶، ۸۰۳۸۶، ۸۰۴۸۶، پنتيوم ۲، پنتيوم ۳، پنتيوم ۴ منتهي شد. 
اين پردازنده ها توسط شركت Intel و ساير شركت ها طراحي و به بازار عرضه شد. طبيعتاً پنتيوم هاي ۴ جديد در مقايسه با پردازنده ۸۰۸۸ بسيار قوي تر مي باشند زيرا كه از نظر سرعت به ميزان ۵۰۰۰ بار عمليات را سريعتر انجام مي دهند. 
جديدترين پردازنده ها اگر چه سريعتر هستند گران تر هم مي باشند. كارآيي رايانه ها بوسيله پردازنده آن شناخته مي شود. ولي اين كيفيت فقط سرعت پروسسور را نشان مي دهد نه كارآيي كل رايانه را. به طور مثال اگر يك رايانه در حال اجراي چند نرم افزار حجيم و سنگين است و پروسسور پنتيوم ۴ آن ۲۴۰۰ كيگاهرتز است، ممكن است اطلاعات را خيلي سريع پردازش كند. اما اين سرعت بستگي به هاردديسك نيز دارد. يعني اين كه پروسسور جهت انتقال اطلاعات زمان زيادي را در انتظار مي گذراند. 
پروسسورهاي امروزي ساخت شركت Intel، پنتيوم ۴ و سلرون Celeron هستند. پروسسورها با سرعت هاي مختلفي برحسب گيگاهرتز (معادل يك ميليارد هرتز با يك ميليارد سيكل در ثانيه است) براي پنتيوم ۴ از ۴/۱ گيگاهرتز تا ۵۳/۲ متغير است و براي پروسسور سرعت از ۸۵/۰ گيگاهرتز تا ۸/۱ گيگاهرتز است. يك سلرون همه كارهايي را كه يك پنتيوم ۴ انجام مي دهد را مي تواند انجام دهد اما نه به آن سرعت.


پردازنده دو عمل مهم انجام مي دهد: 

۱- كنترل تمام محاسبات و عمليات 
۲- كنترل قسمت هاي مختلف 

پردازنده در رايانه هاي شخصي به شكل يك قطعه نسبتاً تخت و كوچك به اندازه ۸ يا ۱۰ سانتي متر مربع كه نوعي ماده، مانند پلاستيك يا سراميك روي آن را پوشانده است تشكيل شده در واقع فرآيند بوجود آمدن اين مغز الكترونيكي به اين گونه مي باشد كه از سيليكان به علت خصوصيات خاصي كه دارد جهت ايجاد تراشه استفاده مي شود. (شکل زیر)
http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/14.jpg
بدين گونه كه آن را به صورت ورقه هاي بسيار نازك و ظريف برش مي دهند و اين تراشه ها را در درون مخلوطي از گاز حرارت مي دهند تا گازها با آنها تركيب شوند و بدين صورت طبق اين فرآيند شيميايي سيليكان كه از جنس ماسه مي باشد به فلز و بلور تبديل مي شود كه امكان ضبط و پردازش اطلاعات را در بردارد. اين قطعه كار ميليونها ترانزيستور را انجام مي دهد.

كارت صدا Sound Card


كارت صدا يكي از عناصر سخت افزاري رايانه است كه باعث پخش و ضبط صدا مي گردد. قبل از گسترش كارت هاي صدا، صدا در رايانه توسط بلند گوهاي داخلي ايجاد مي شد. اين بلند گوها توان خود را از برد اصلي مي گرفتند. 

استفاده از كارت صدا از اواخر سال ۱۹۸۰ شروع شد. در حال حاضر شركت هاي متعددي توليدات خود را در اين زمينه به بازار عرضه مي كنند. كارت صوتي همانند كارت گرافيكي بر روي برد اصلي نصب مي شود و در پشت آن چند فيش براي ميكروفن و بلند گو قرار دارد.

http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/soundcard.gif

وظيفه كارت صدا آماده سازي سيگنال ها جهت پخش و دريافت سيگنال هاي ورودي از ميكروفن و آماده كردن آنها براي ذخيره در رايانه است. 
كارت صدا، كارت صوتي ( voice ) نيز ناميده مي شود و در بسياري موارد مي تواند اصواتي با كيفيت بسيار عالي توليد كند. 
صوت، يك سيگنال آنالوگ است كه به صورت موج پيوسته انتشار مي يابد. 

رايانه همواره در حال پردازش سيگنال هاي آنالوگ است، زيرا اين سيگنال ها دائماً در حال تغييرند. در واقع لازم است كه سيگنال هاي آنالوگ به بيت هاي رقمي (ديجيتال) تبديل شوند. اين عمل توسط وسيله اي به نام Analog to Digital Convertor ) ADC ) صورت مي گيرد. 

سيگنال هاي ديجيتالي توليد شده مجدداً بايد به سيگنال هاي آنالوگ تبديل شوند تا بتوانند به وسيله بلند گو پخش شوند. اين عمل توسط سخت افزار ديگري به نام DAC یا Digital to Analog Convertor صورت مي گيرد.
اجزاي تشكيل دهنده كارت صدا


در اینجا به تشریح اجزا کارت صدا به صورت دقیق تر می پردازیم. در شکل بالایی اجزا کارت صدا به طور کلی نشان داده شده است. گلستان جان هم زحمت بکشند و مطالب خود سایت میکرورایانه را در مورد کارت صدا در ادامه بحث ما کپی کنند. اما این اجزا عبارتند از:

- پردازنده سيگنال هاي ديجيتال كه عمليات مورد نظر را انجام مي دهند. 
- مبدل آنالوگ به ديجيتال (ACD) براي صوت ورودي به رايانه 
- مبدل ديجيتال به آنالوگ (DAC) 
- حافظه ROM يا فلش جهت ذخيره سازي اطلاعات 
- اينترفيش دستگاه هاي موزيكال ديجيتالي (MIDI) جهت اتصال دستگاه هاي موزيك خارجي 
- كانكتورهاي لازم جهت اتصال به ميكروفن يا بلند گو 
- پورت مخصوص بازي براي اتصال Joystick 

كارت هاي صوتي قديمي عمدتاً از نوع ISA بوده اند، اما كارت صداهاي امروزي از نوع PCI هستند كه بر روي برد اصلي نصب مي گردند. شکل زیر را ملاحظه کنید:
http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/agp-or-pci-or-isa.jpg

بيشتر مادربردها در حال حاضر كارت صدا را به صورت يك تراشه بر روي برد اصلي دارند. در شکل زیر انواع اسلات های مادر برد نشان داده شده است:
http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/0.jpg
انواع اتصال كارت صدا به رايانه


- بلند گو (Speaker) 
- يك منبع ورودي آنالوگ (ميكروفن ضبط صوت و CD-Player) 
- يك منبع ورودي ديجيتال نظير CD-ROM 
- يك منبع آنالوگ خروجي نظير ضبط صوت 
- يك منبع ديجيتال خروجي 

انواع رابط های کارت صدا

جهت دريافت و ضبط از طريق كارت صدا لازم است رابط هاي زير وجود داشته باشد توجه داشته باشید که در این شکل فقط سوکتهای لبه کارت صدا نشان داده شده است:

http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/00.jpg
- رابط ورودي:
اين رابط براي ورود داده هاي صوتي استفاده مي شود كه داراي انواع مختلفي مي باشند. 

- رابط خروجي:
اين رابط جهت ارسال سيگنال ها از كارت به وسايل خارج از رايانه به كار مي رود. يك سر كابل به كارت صوتي و سر ديگر آن به بلندگو و يا هدفون و سيم هاي استريو وصل مي شود. 

- رابط صوتي ويژه سي دي:
اين نوع رابط ها جهت ارتباط بين ديسك گردان، سي دي و كارت صوتي مي باشد و اگر اين ارتباط برقرار نشود ديسك هاي سي دي صوتي پخش نمي شود و در اين حالت صدا تنها از طريق خروجي گوشي ( هدفون ) شنيده مي شود. 

- رابط بازي با کانکتور D15:
اكثر كارت هاي صوتي داراي اين رابط مي باشند. اين رابط ۱۵ پايه دارد و D شكل است و مي توان به وسيله آن از ارگ هاي الكترونيكي، موسيقي را دريافت و به صورت فايل بر روي سي دي ذخيره كرد. در شکل زیر کانکتور D15 لبه کارت صوتی به همراه رابط ان نشان داده شده است.

هارد ديسك


با اين كه ديسك هاي نرم (فلاپی) توانايي ذخيره اطلاعات را دارند، اما داراي معايبي نيز مي باشند. از جمله اين عيب ها گنجايش و سرعت كم دسترسي به اطلاعات را مي توان نام برد. در صورتي كه ديسك سخت اين گونه نمي باشد. 

هر رايانه معمولاً يك هاردديسك دارد اما بعضي سيستم ها ممكن است داراي دو يا چند هاردديسك باشند. در واقع هاردديسك يك محيط ذخيره سازي دائم براي داده ها مي باشد. اطلاعات در رايانه به گونه اي تبديل مي گردند كه بتوان آنها را به طور دائم بر روي هارد ذخيره كرد. 
هاردديسك در سال ۱۹۵۰ اختراع گرديد. در آن زمان هاردديسك ها با قطر ۲۰ اينچ يعني ۵۰/۸ سانتي متر و توانايي ذخيره سازي چندين مگابايت را داشتند. به اين ديسك ها ديسك ثابت مي گفتند. اما براي تمايز آنها با فلاپي ديسك هاردديسك نام گرفتند. اين هاردديسك ها داراي يك صفحه براي نگهداري محيط مغناطيسي مي باشند. در واقع هاردديسك مشابه يك نوار كاست مي باشد و از روش نوار كاست براي ضبط مغناطيسي استفاده مي نمايند. در اين حالت به سادگي مي توان اطلاعات را حذف و بازنويسي كرد. اين اطلاعات مدت ها باقي خواهند ماند.

 

تمايز هاردديسك با نوار كاست


- در هاردديسك لايه مغناطيسي بر روي ديسك شيشه اي و يا يك آلومينيوم اشباع شده قرار خواهد گرفت كه به خوبي سطح آنها صيقل داده مي شود. 
- در هاردديسك مي توان به سرعت در هر نقطه دلخواه اطلاعات را ذخيره و بازيابي نمود، به اين صورت كه احتياجي به ترتيب ذخيره اطلاعات نمي باشد. 
- در هاردديسك هد خواندن و نوشتن ديسك را لمس نخواهد كرد. 
- گرداننده هاردديسك هد مربوط به هارد را در هر ثانيه ۳۰۰۰ اينچ به چرخش در مي آورد. 
- هاردديسك مي تواند حجم بسيار بالايي از اطلاعات را در فضايي كم و با سرعت بالا ذخيره سازد. اين اطلاعات در قالب فايل ذخيره مي شوند. در واقع فايل مجموعه اي از بايت هاست. زماني كه برنامه اي اجرا مي شود هاردديسك اطلاعات مربوط به برنامه را براي استفاده به پردازنده ارسال خواهد كرد.
در شکل زیر اجزا یک هارددیسک شرح داده شده است
http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/13.jpg
به مجموعه ديسكهاي دايره اي شكلي كه روي هم قرار مي گيرندو اطلاعات بر روي آنها ذخيره مي گردد هاردديسك مي گويند . اين مجموعه براي حفاظت در مقابل گرد و خاك و ساير عوامل مخرب در داخل يك پوشش دربسته قرار مي گيرد. در واقع هاردديسك جعبه اي فلزي است كه از چند صفحه ديسك و چند هد تشكيل مي شود. هر ديسك داراي دو سطح است كه مي توان داده ها را بر روي آن ذخيره كرد. پس در زمان خواندن و نوشتن بر روي هر يك از ديسك ها دو هد قرار مي گيرد. در زمان خريد هاردديسك نسبت نوك يا هد به ديسك بسيار مهم است يعني اگر نسبت به صورت ۸ به ۴ بيان شود در واقع هاردديسك ۸ نوك يا هد و ۴ ديسك يا صفحه دو طرفه دارد. دو برابر بودن تعداد هدها بر صفحه ها نشان مي دهد يك هد براي هر طرف ديسك وجود دارد. 
در واقع هاردديسك از دو قسمت زير براي ذخيره و بازيابي اطلاعات استفاده مي كند: 
۱- هد يا نوك هاي خواندن و نوشتن كه از مركز ديسك به طرف لبه قرار دارد. 
۲- ديسك هاي دايره اي با توانايي چرخش يا دوران 
از نظر نوع نصب و كاربرد هاردديسك به دو دسته تقسيم مي شود: 
۱- ديسك هاي سخت قابل حمل 
۲- ديسك هاي سخت ثابت 


نكته:
ديسك هاي قابل حمل را بدون اين كه اطلاعات آنها صدمه ببيند مي توان حمل كرد، در صورتي كه ديسك هاي ثابت در داخل جعبه رايانه نصب مي شود. 
توجه داشته باشيد كه در زمان روشن بودن رايانه آن را حركت ندهيد زيرا ديسك سخت صدمه مي بيند. 
هاردديسك معمولي در حدود ۱۵ سانتي متر طول، ۱۰ سانتي متر عرض و در حدود ۳ سانتي متر ارتفاع دارند. وزن آنها نيز كمتر از ۱ كيلوگرم است. 
اين گونه ديسك ها بالای صد و شصت گيگا بايت داده را مي توانند در خود جاي دهند. 

ديسك هاي سخت از نظر اندازه به چند دسته تقسيم مي شوند: 
۱- ديسك هاي سخت ۵/۲ اينچي 
۲- ديسك هاي سخت ۸/۱ اينچي 
۳- ديسك هاي سخت ۲۵/۵ و ۵/۳ اينچي به نام ديسك هاي سخت تمام قد 
۴-ديسك هاي سخت ۲۵/۵ و ۵/۳ اينچي مشهور به ديسك هاي سخت نيم قد 

ديسك هاي تمام قد در حال حاضر توليد نمي شوند. ديسك هاي شخصي معمولاً از نوع ۵/۳ اينچي نيم قد بوده و داراي ارتفاع ۵/۳ سانتي متري هستند. پس ديسك هايي كه امروزه ساخته مي شوند اغلب ۵/۳ و ۵/۲ اينچي هستند. ديسك هاي سخت ۸/۱ اينچي حداكثر ۵ گيگابايت فضا دارند. اين گونه ديسك ها اطلاعات را بر روي يك سطح از ديسك هاي موجود ذخيره مي كنند. 
به اين ديسك ها ديسك يك لبه هم مي گويند اما در حال حاضر مي توان براي هر دو سطح ديسك اطلاعات را ذخيره كرد.
نحوه قرار گيري اطلاعات در هارد دیسک


اطلاعات بر روي سطح هر يك از صفحات ديسك سخت در مجموعه اي به نام سكتور و شيار ذخيره مي گردد. شيارها دواير متحدالمركزي هستند كه براي هر يك از آنها تعداد محدودي سكتور با ظرفيتي بين ۲۵۶ و ۵۱۲ بايت ايجاد مي گردد. اين سكتورها همزمان با آغاز فعاليت سيستم عامل در كلاستر سازماندهي مي گردد. زماني كه درايو رايانه تحت عمليات Low level format قرار مي گيرد سكتورها وشيارها ايجاد مي شود و زماني كه درايو High level format مي گردد با توجه به نوع سيستم عامل بستر مناسبي براي استقرار فايل هاي اطلاعاتي فراهم مي آيد.
http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/hard3.gif
عمر مفيد ديسك هاي سخت


در سال هاي گذشته عمر ديسك هاي سخت بسيار كوتاه بود. اما در حال حاضر عمر مفيد ديسك ها افزايش يافته است. عمر مفيد با واژه (MTFB) نشان داده مي شود. اين واژه سرواژه كلمات زير به معناي ميانگين پايداري عملي و يا زمان ميانگين ميان خرابي هاست. 

Mean Time Between Failune 
اين علامت نشان دهنده متوسط فاصله زماني استفاده از ديسك سخت، تا پيش آمدن يك اشكال براي آن است. عمر مفيد بر حسب ساعت نشان داده مي شود. سازندگان ديسك سخت عمر مفيد آن را ۴۰۰۰۰ تا ۱۰۰۰۰۰۰ در نظر مي گيرند. 

در صورتي كه رايانه به طور مستمر روشن نباشد و كار نكند، اين مقدار افزايش خواهد يافت. زماني كه عمر مفيد تمام مي شود ديسك سخت يكباره خراب نمي شود بلكه ممكن است به مرور دچار فرسودگي شود در اين زمان در هنگام روشن كردن رايانه پيام Invalid System disk ظاهر مي شود. 
گنجايش يا ظرفيت ديسك سخت


در زمان انتخاب ظرفيت هارديسك به اين فكر نكنيد كه چه گنجايشي نياز شما را برطرف مي كند بلكه به اين فكر كنيد كه در آينده به ظرفيت بيشتري احتياج داريد. البته نوع برنامه هايي كه استفاده مي كنيد راهنماي خوبي براي تعيين ظرفيت هاردديسك مي باشد. ديسك هاي سخت از ظرفيت ۶۴۰ و ۸۵۰ مگابايت و كم تر كه در سال هاي گذشته وجود داشته است شروع مي شود و تا ۱، ۲/۱، ۶/۱، ۱/۲، ۵/۲، ۴، ...و ۸۰ ، ۱۲۰، ۱۶۰، ۲۰۰، ۲۵۰ گيگابايت و بيشتر در بازار موجود مي باشد. 

در حال حاضر ديسك هاي سخت با ظرفيت ۲۰ تا ۴۰ گيگا بايتي كم ترين گنجايش موجود هستند. تقريباً هيچ سازنده ديسك سختي ديگر گونه های پایین ( گيگابايت ) را توليد نمي كنند. به طور كلي براي محاسبه گنجايش ديسك سخت عامل هاي زير را بايد در نظر گرفت: 

- گنجايش هر قطاع يا سكتور 
- تعداد هدها يا نوك هاي خواندن و نوشتن 
- تعداد استوانه ها يا سيلندرها 
- تعداد قطاع ها يا سكتورها 


تعداد نوك يا هد 

شركت هاي مختلفي كه ديسك هاي سخت توليد مي كنند گنجايش هاي مختلفي را مي سازند كه ساختار آنها تقريباً يكسان است. اما تعداد صفحه هاي تشكيل دهنده ديسك و تعداد هدها يا نوك هاي خواندن و نوشتن متفاوت است. بدين صورت اگر ديسكي را با گنجايش و سرعت زياد مي خواهيد تعداد نوك هاي خواندن و نوشتن آن براي هر صفحه بايد ۵ يا بيشتر باشد تا سرعت انتقال داده ها افزايش پيدا كند. 

در واقع بالا بودن گنجايش ديسك به معناي زياد بودن سرعت آن نيست بنابر اين بهتر است بدانيم چه تعداد صفحه در داخل ديسك سخت وجود دارد و نوك هاي آن چند عدد مي باشد. 
ديسك هاي سخت تقلبي خريد رايانه، قطعات و دستگاه هاي جانبي آن با اين كه ساده به نظر مي آيد اما بسيار پيچيده و فني مي باشد زيرا تقلب در اكثر ابزارها و دستگاه هاي رايانه به چشم مي خورد، مانند: 

- تغيير برچسب: در اين حالت مشخصات روي ابزارها و دستگاه هاي رايانه را تغيير مي دهند و آنها را پاك كرده و مشخصات جديدي روي آنها مي نويسند. 
- بسته بندي مجدد: در اين صورت هاردديسك دسته دوم و تقلبي را در بسته بندي و كاغذهايي درست مانند بسته بندي اصل آن قرار مي دهند. 
- هاردديسك هاي ارزان قيمت: بعضي وقت ها هاردديسك هاي ارزان قيمت را به جاي نوع بهتر و گرانتر آن به كار مي برند. مخصوصاً اگر رايانه را به صورت پلمب شده خريداري كنيد. 
- شيوه توليد: همان طور كه مي دانيد ابزارها به دو صورت خرده فروشي و عمده فروشي (توليد فله اي) به بازار عرضه مي شوند. در حالت اول كالاها معمولاً اصل بوده و ويژگي هاي اعلام شده دقيقاً برابر جنس عرضه شده مي باشد. اين ابزارها معمولاً گران تر بوده، مدت ضمانت نامه اي بيشتري دارند و داراي دفترچه راهنما، جعبه بسته بندي، نرم افزار جانبي و موارد ديگر مي باشند. 

بنابراين تنها كاري كه مي توان انجام داد اين است كه به نكات زير قبل از خريد توجه بفرماييد: 
- بسته بندي را چك كنيد. 
- ضمانت نامه ها را به دقت بررسي كنيد، زيرا داشتن ضمانت نامه دليل بر اصل بودن كالا نيست. 
- افزار سنجي كنيد: در صنعت رايانه به اين كار محك زني مي گويند. افزار سنج هاي رايانه اي به كاربرها كمك مي كنند تا از كارآيي سيستم، ابزارها و دستگاه آگاه شوند. 
افزارسنج ها برنامه هايي هستند كه با استفاده از داده هاي خود سخت افزارهاي نصب شده بر روي رايانه را چك مي كنند و اگر اين سخت افزارها و ابزارها داراي امتياز كم تري باشند. مي توان گفت آن ابزار تقلبي، دست دوم و كاركرده مي باشد. 
نكته: هميشه از آخرين نگارش افزارسنج ها استفاده كنيد و در نظر داشته باشيد كه همه افزارسنج ها توانايي مورد نياز را ندارند. 

از جمله اين افزارسنج ها نورتون و مك آفي را مي توان نام برد. 
- عيب يابي كنيد: براي اطمينان از نو بودن ابزارها مي توان از نرم افزارهاي عيب يابي و اشكال زدايي رايانه استفاده كرد. يكي از اين نرم افزارها «چك ايت» مي باشد. 
- رايانه را آزمايش كنيد: براي اين كار نرم افزارهاي به خصوصي وجود دارد كه رايانه را مجبور به انجام محاسبات پيچيده مي كند. مانند: Prime95 يا BurnIn Test.

كارت گرافيكي


از نوشته های دوستان ممنونم. بحث اجزاء سیستم را ادامه می دهم:

براي اينكه بتوان در صفحه نمايش رايانه ، تصويرهاي مربوط به داده ها و اطلاعات را مشاهده نمود بايد ارتباطي بين مادربرد و نمايشگر برقرار شود ، به همين دليل كارت گرافيكي در يكي از شكاف هاي توسعه مادربرد قرار مي گيرد و يا يك كابل به مادربرد وصل مي شود و نمايش اطلاعات بر روي صفحه را كنترل مي كند. 

كارت گرافيكي در رايانه داراي جايگاه خاصي است. در بيشتر رايانه ها ، كارت گرافيكي اطلاعات ديجيتال را براي نمايش توسط نمايشگر به اطلاعات آنالوگ تبديل مي نمايند. در واقع نقاط تشكيل دهنده تصوير بر روي نمايشگر پيكسل نام دارند. هر پيكسل يك رنگ را نمايش مي دهد. در نمايشگرهاي مكينتاش هر پيكسل داراي دو رنگ است (سفيد و سياه). در بعضي نمايشگر هاي امروزي هر پيكسل داراي ۲۵۶ رنگ است. در بيشتر صفحات نمايشگر ، پيكسل ها به صورت تمام رنگ ( True Color ) هستند و داراي ۱۶/۸ ميليون حالت مختلفند. 

كارت گرافيكي يك برد مدار چاپي به همراه حافظه و يك پردازنده اختصاصي است. پردازنده محاسبات مورد نياز گرافيكي را انجام مي دهد. 
كارت هاي گرافيكي با نامهاي زير شناخته مي شوند:
كارت ويديويي ، كنترل گر گرافيكي يا ويديويي ، آداپتور گرافيكي يا ويديويي ، شتاب دهنده گرافيكي يا ويديويي .

كارت گرافيكي از سه بخش اساسي تشكيل مي شود: 

حافظه :
يكي از مهمترين اجزاي كارت گرافيكي است. حافظه رنگ مربوط به هر پيكسل را نگهداري مي كند. 
در ساده ترين حالت ( دو پيكسل سياه و سفيد ) به يك بيت براي ذخيره سازي رنگ هر پيكسل نياز مي باشد. با توجه به اينكه هر بايت شامل هشت بيت است ، نياز به هشتاد بايت براي ذخيره سازي رنگ مربوط به پيكسل هاي موجود در يك سطر در روي صفحه نمايشگر و ۳۸۴۰۰ بايت حافظه به منظور نگهداري تمام پيكسل هاي قابل مشاهده بر روي نمايشگر خواهد بود. 

اينترفيس رايانه:
اينتر فيس با اتصال كارت گرافيكي به گذرگاه مربوطه بر روي برد اصلي ، محتويات حافظه را تغيير مي دهد. در اين حالت رايانه سيگنال ها را از طريق گذرگاه براي تغيير محتويات حافظه ارسال مي كند. 

اينترفيس ويديو:
اين قسمت سيگنال مورد نياز براي مانيتور را مي سازد. كارت گرافيكي سيگنال هاي رنگي را توليد مي كند و باعث حركت اشعه در CRT مي شود. در واقع كارت گرافيكي تمام حافظه اي مربوطه را بيت به بيت اسكن مي كند. سيگنال هاي مورد نظر جهت هر پيكسل موجود براي هر خط ارسال و در نهايت يك پالس افقي Sync ارسال مي گردد ، عمليات فوق براي ۴۸۰ خط تكرار و در پايان يك پالس عمودي Sync ارسال خواهد شد.
كارت هاي گرافيكي ساده frame Buffer ناميده مي شود. اين نوع كارت يك Frame از اطلاعات را نگاهداري مي كند. ريزپردازنده رايانه مسئول بهنگام سازي هر بايت در حافظه كارت گرافيك است. 
در صورتي كه عمليات گرافيكي پيچيده اي وجود داشته باشد ، ريزپردازنده مدت زيادي را صرف بهنگام سازي حافظه كارت مي نمايد.
بنابراين براي ساير عمليات زماني باقي نخواهد ماند. مثلاً اگر يك تصوير سه بعدي داراي ۰۰۰/۱۵ ضلع باشد ، ريزپردازنده بايد هر ضلع را رسم و عمليات مربوط را در كارت انجام دهد ، بدين صورت اين عمليات زمان زيادي لازم دارد. 

در صورتي كه كارت هاي گرافيكي جديد حجم عمليات مربوط به پردازنده را به شدت كاهش مي دهد. 

اين نوع كارت هاي جديد داراي يك پردازنده قوي هستند كه مختص اين عمليات مي باشند. با توجه به نوع كارت گرافيك پردازنده مي تواند يك كمك پردازنده گرافيكي و يا يك شتاب دهنده گرافيكي باشد. 

پردازنده كمكي و پردازنده اصلي همزمان فعاليت نموده و زماني كه از شتاب دهنده گرافيك استفاده مي شود دستورات لازم از طريق پردازنده اصلي براي شتاب دهنده ارسال و شتاب دهنده ساير كارها را انجام مي دهد. 

در سيستم هاي كمك پردازنده درايو كارت گرافيك عمليات مربوط به كارهاي گرافيكي را به طور مستقيم براي پردازنده كمكي گرافيكي ارسال مي كند. در سيستم هاي شتاب دهنده گرافيكي درايو كارت گرافيك در ابتدا همه چيز را براي پردازنده اصلي ارسال مي كند. سپس پردازنده اصلي شتاب دهنده گرافيك را هدايت مي نمايد.

عناصر كارت گرافيكي 

- حافظه:
در كارت گرافيكي از حافظه هاي مختلف استفاده مي شود. يكي از بهترين نوع آنها از پيكربندي dual-ported استفاده مي نمايد. در اين نوع كارت ها امكان نوشتن در يك بخش و خواندن از بخش ديگر به صورت همزمان امكان پذير است. بدين صورت مدت زمان كاهش خواهد يافت. 

(Digital-to-Analog Converter ) یا DAC 
يك نوع تبديل كننده مي باشد كه داده ها را به ديجيتال تبديل مي كند. سرعت اين نوع تبديل كننده تأثير بسيار زيادي بر مشاهده تصوير بر روي صفحه نمايش خواهد داشت. 

Display Connector 
اغلب كارت هاي گرافيكي از كانكتور ۱۵ پين استفاده مي كنند. اين نوع كانكتورها در زمان عرضه VGA مطرح شدند. 

Graphic BIOS
كارت هاي گرافيكي داراي يك تراشه كوچك مي باشند. اين تراشه به قسمت هاي ديگر كارت نحوه انجام عمليات را اعمال خواهد كرد. اين قسمت مسئوليت تست كارت گرافيك يعني عمليات ورودي و خروجي را نيز بر عهده دارد. 

Computer (bus) Conneetor 
اين نوع پورت امكان اتصال كارت بر حافظه را فراهم مي آورد و داراي سرعت بيشتري مي باشد. بيشتر اين گذرگاه ها از نوع AGP مي باشد. 

پردازنده گرافيكي:
همانطور كه از نام آن پيداست مغز كارت گرافيك مي باشد و مي تواند در سه حالت پيكربندي كارت گرافيكي را انجام دهد. 

استانداردهاي كارت گرافيك
اولين كارت گرافيك در سال ۱۹۸۱ توسط شركت IBM به بازار عرضه گرديد. اين نوع كارت به صورت تك رنگ و با نام اختصاري MDAS ارائه گرديد. رنگ نوشته در اين حالت سفيد يا سبز و زمينه سياه بود. صفحات نمايشگري كه از اين كارت ها استفاده مي كردند ، متني بودند. سپس كارت هاي چهار رنگ HGC در بازار عرضه گرديدند. 

بعد از آن كارت هاي هشت رنگ CGA و كارت هاي شانزده رنگ EGA توليد شدند. شركت IBM در سال ۱۹۷۸ كارت VGA را توليد كرد. اين نوع كارت ها ۲۵۶ رنگ را نشان مي دادند و وضوح آنها ۴۰۰* ۷۲۰ بود. سپس كارت هاي SVGA عرضه شدند. اين نوع كارت ۱۶/۸ ميليون رنگ با وضوح ۱۰۲۴* ۱۲۸۰ بود.
هر چه تعداد رنگ و وضوح تصوير افزايش يابد كارت گرافيك بهتر خواهد بود. كارت هاي گرافيكي به راحتي به سيستم متصل مي شوند. كارت هاي جديد از طريق پورت AGP و كارت هاي قديمي از طريق اسلات هاي ISA و يا PCI بر سيستم متصل مي شدند.
ویژگی ها ی مهم 

از مهمترین ویژگی های مرتبط با کارت گرافيک ، می توان به موارد زیر اشاره نمود : 

• پردازنده: امروزه به برکت وجود پردازنده های استفاده شده در کارت های گرافيک، امکان مشاهده تصاوير سه بعدی متحرک بطور کامل فراهم شده است. کارت های گرافیک قادر به پشتیبانی از تصاویر ویدئویی سه بعدی و بازی های کامپیوتری به نحو مطلوب و با بهترین وضعیت نمایش می باشند. زماني که بازی های کامپيوتری با سرعت شصت فريم در ثانيه و يا بيشتر نمايش داده شوند، وضعيت مطلوبی فراهم و تصاوير فاقد هر گونه لرزشی خواهند بود (چشم انسان در این سرعت قادر به تشخیص لرزش تصاویر نمی باشد).

کارت های گرافیک ارزان قیمت بخوبی جوابگوی بازی های قدیمی می باشند. ولی کارت هائی که قادر به توليد فريم ها با سرعت بيشتری باشند، امکان مشاهده تصاوير و بازی های کامپيوتری در Resolution بالاتر را به خوبی فراهم می نمايند. به منظور اجرای بازی های کامپيوتری که از تکنولوژی DirectX 8 استفاده می نمايند، می بایست از کارت هائی که تکنولوژی فوق را حمايت می نمايند، استفاده گردد. 


• حافظه: در مواردي که از کامپيوتر به منظور انجام عمليات حجيم گرافيکی نظير بازی های کامپيوتری و يا ويرايش تصاوير ويدئویی استفاده می گردد، اطلاعات مورد نياز برای نمايش تصاوير در حافظه RAM کارت گرافيک ذخيره می گردد. کارت های گرافيک برای انجام مطلوب و سريع اينگونه فعاليت ها به حجم بالائی از حافظه نياز خواهند داشت. به موازات افزايش پيجيدگی بازی های کامپيوتری يا حجم عمليات گرافيکی به حافظه بيشتری نياز خواهد بود. استفاده مناسب و بهينه از حافظه کارت گرافيک، می تواند تضمين لازم در خصوص نمايش بدون نقص تصاوير را ارائه نمايد. 

اكثر كارت های گرافیكی دارای 32Mb تا 64Mb حافظه از نوع DDR SDRAM می باشند. مدل های پيشرفته تر و در عين حال گرانتر، دارای حافظه ای بین 128MB تا 256MB و بالاتر می باشند. برای بازی های قدیمی، حافظه ای به ميزان 32MB كافی بوده ولی كیفیت و سرعت انتقال تصاویر در آنها نسبت به كارت های جدید خصوصا" در Resolution 1600 * 1200، مطلوب نخواهد بود. برای استفاده از بازی های گرافيکی پيشرفته با Resolution بالاتر، پیشنهاد می گردد از كارت های گرافیكی که دارای حداقل 128Mb حافظه می باشند، استفاده گردد. در صورت تمايل و ضرورت می توان از كارت هایی که دارای حافظه بیشتری هستند، استفاده نمود.

تراشه های گرافیكی كه بر روی مادر برد كامپیوتر قرار دارند (OnBorad) از حافظه اصلی سیستم استفاده می نمایند (با توجه به اشغال بخشی از حافظه توسط کارت گرافيک موجود بر روی مادربرد، فضای کمتری در حافظه اصلی برای ساير عمليات باقی خواهد ماند). (برای مطالعه بیشتر دراین مورد به سایر مقالات سایت میکرو رایانه مراجعه نمایید) در اغلب كامپیوترهای ارزان قيمت که از پردازنده هائی با توان عملياتی کمتر استفاده می شود (نظير پردازنده های Celeron محصول شركت Intel و یا Duron محصول شركت AMD)، كارت گرافیكی بر روی مادربرد تعبیه شده است. كامپیوترها ی فوق، دارای توانایی قابل قبولی بوده و برای كاربران معمولی كه از كامپیوتر به عنوان یك ابزار كار معمولی استفاده می نمایند، بسیار كارآمد بوده ولی در صورتي که کاربرانی نيازمند انجام عمليات گرافیك سنگین بوده و يا قصد استفاده از بازی هائی را داشته باشند که دارای گرافيک بالا می باشد، سيستم های فوق کارآئی مناسبی نخواهند داشت.

حافظه


با آن كه واژه حافظه را مي توان براي هر نوع وسيله ذخيره سازي به كار برد، اما بيشتر براي مشخص نمودن حافظه هاي سريع با قابليت ذخيره سازي موقت استفاده مي شود. زماني كه پردازنده مجبور باشد براي بازيابي اطلاعات به طور دائم از هارد استفاده نمايد طبيعتاً سرعت عمليات آن كند خواهد شد. 

به طوركل از حافظه هاي متعددي به منظور نگهداري موقت اطلاعات استفاده مي شود. زماني كه در حافظه هاي دائمي مانند هارد اطلاعاتي موجود باشد كه پردازنده بخواهد از آنها استفاده نمايد بايد اطلاعات فوق از طريق حافظه RAM در اختيار پردازنده قرار گيرد و سپس اطلاعات مورد نياز خود را در حافظه Cache و دستور العمل هاي خاص عملياتي را در ريجيسترها ذخيره كند. همان طور كه مي دانيد تمام عناصر سخت افزاري و نرم افزاري با يكديگر كار مي كنند و از زماني كه سيستم روشن مي شود و تا زماني كه خاموش مي شود، پردازنده به صورت دائم و پيوسته از حافظه استفاده مي كند. 

حافظه رايانه بر اساس نوع آن از تعدادي خازن و ترانزيستور كه در چند آي سي ( IC ) قرار گرفته، تشكيل شده است. براي ذخيره اطلاعات در حافظه، بعضي از ترانزيستورها در حالت قطع و برخي در حالت وصل قرار مي گيرند. خازن ها نيز در حالت شارژ و دشارژ قرار مي گيرند.
http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/7.jpg

در رايانه از دو نوع حافظه استفاده مي شود: 

*Random Access Memory- RAM اين نوع حافظه براي ذخيره سازي موقت اطلاعات رايانه در حالت كار با سيستم به كار مي رود. 

* Read Only Memory ROM اين نوع حافظه، حافظه دائم است و از آن براي ذخيره سازي اطلاعات مهم استفاده مي شود. 

حافظه RAM (خواندني و نوشتني)

همان طور كه مي دانيد اطلاعات موقت رايانه با خاموش شدن سيستم كاملاً پاك مي شود. به اين صورت كه اگر برنامه يا داده اي به رايانه داده باشيد و به هر علتي برق رايانه قطع شود، پس از روشن شدن دوباره رايانه بايد برنامه و يا اطلاعات را دوباره وارد كنيد. پردازنده اطلاعات مورد نياز خود را از حافظه رم دريافت مي كند و عمليات لازم را انجام داده و سپس نتايج را در رم ذخيره مي كند. 
بنابر اين اين نوع حافظه خواندني و نوشتني است. هنگامي كه رايانه را روشن مي كنيد حافظه اصلي كنترل و تست مي شود. مقدار حجم تست شده روي صفحه نمايش مشاهده مي شود. 

حافظه رم به دو نوع تقسيم مي شود:
- DRAM (رم پويا يا ديناميك) 
- SRAM (رم استاتيك) 

حافظه دي رم جهت ذخيره اطلاعات خود از خازن استفاده مي كند. خازن در حالت شارژ معادل يك است و در حالت دشارژ معادل صفر است. اين حافظه بايد به طور مداوم تغذيه الكتريكي شود تا بارهاي مثبت و منفي را از دست ندهد. در اين حالت در فاصله زماني متناوب عمليات بازنويسي و تجديد اطلاعات صورت مي پذيرد. 

دو نوع مدار بازنويسي وجود دارد: ۱۰بيتي كه به آن بازنويسي ۱k مي گويند و ۱۱ بيتي كه به آن بازنويسي ۲k گويند. 


حافظه ROM

اين نوع حافظه در زمان خاموش شدن رايانه داده هايش را از دست نمي دهد. تعدادي از حافظه مانند ROM و حافظه فلش كارتهاي هوشمند در اين گروه قرار مي گيرد.
سرعت حافظه

سرعت تراشه هاي رم با مدت زمان لازم براي دسترسي به يك بيت از اطلاعات سنجيده مي شود. اين واحد با سرعت نانو ثانيه اندازه گيري مي شود. توجه داشته باشيد كه سرعت حافظه هاي دي رم را با سرعت ساعت اندازه گيري مي كنند. سرعت تراشه هاي حافظه به طور عادي در محدوده ۵۰ تا ۱۲۰ نانوثانيه است. هر چه عدد بيان شده براي سرعت كم تر باشد حافظه سريع تر است. اين نوع حافظه ها از نظر سخت افزاري به گروه هاي زير تقسيم مي شوند:
انواع حافظه


حافظه SRAM حافظه اي با دستيابي تصادفي ايستا مي باشد كه در آغاز براي Cache استفاده مي شد. اين حافظه از چندين ترانزيستور براي هر يك از سلول هاي حافظه خود استفاده مي نمايد. اين نوع حافظه قادر نيست مانند DRAM اطلاعات را به طور پيوسته بازخواني نمايد. هر يك از سلول هاي حافظه مادامي كه منبع تأمين انرژي آنها فعال باشد داده هاي خود را ذخيره خواهد نمود. سرعت اين نوع حافظه ها بسيار بالا مي باشد. 


* Caching نوعي تکنیک استفاده از حافظه است كه براي ذخيره اطلاعاتي كه داراي فركانس بازيابي بالا مي باشند استفاده مي شود.
چه ميزان حافظه مورد نياز است؟ 

ميزان حافظه مورد نياز بر اساس كاربردهاي متفاوت گوناگون مي باشد. براي استفاده از برنامه هاي خاص، نرم افزارهاي طراحي و انيميشن سه بعدي برنامه هاي سرگرم كننده و دستيابي به اينترنت هر يك نياز به حافظه خاصي دارد. 

در واقع افزايش حافظه به نوع استفاده از رايانه مربوط مي گردد. به طور مثال سيستم عامل ويندوز ۹۵ و يا ۹۸ حداقل به ۳۲ مگابايت حافظه نياز دارد. سيستم عامل ويندوز ۲۰۰۰ حداقل به ۶۴ مگابايت، سيستم عامل لينوكس حداقل به ۴ مگابايت، سيستم عامل اپل به ۱۶ مگابايت و ويندوز XP به ۶۴ مگابايت حافظه نياز دارد.

انواع حافظه RAM 

Static random access memory) SRAM). اين نوع حافظه ها از چندين ترانزيستور (چهار تا شش) برای هر سلول حافظه استفاده می نمايند. برای هر سلول از خازن استفاده نمی گردد. اين نوع حافظه در ابتدا بمنظور cache استفاده می شدند. 

Dynamic random access memory) DRAM). در اين نوع حافظه ها برای سلول های حافظه از يک زوج ترانزيستور و خازن استفاده می گردد. 

Fast page mode dynamic random access memory) FPM DRAM). شکل اوليه ای از حافظه های DRAM می باشند. در تراشه ای فوق تا زمان تکميل فرآيند استقرار يک بيت داده توسط سطر و ستون مورد نظر، می بايست منتظر باقی بماند و در ادامه بيت خوانده خواهد شد. (قبل از اينکه عمليات مربوط به بيت بعدی آغاز گردد). حداکثر سرعت ارسال داده به L2 cache معادل 176 مگابايت در هر ثانيه است. 

Extended data-out dynamic random access memory) EDO DRAM). اين نوع حافظه ها در انتظار تکميل و اتمام پردازش های لازم برای اولين بيت نشده و عمليات مورد نظر خود را در رابطه با بيت بعد بلافاصله آغاز خواهند کرد. پس از اينکه آدرس اولين بيت مشخص گرديد EDO DRAM عمليات مربوط به جستجو برای بيت بعدی را آغاز خواهد کرد. سرعت عمليات فوق پنج برابر سريعتر نسبت به حافظه های FPM است. حداکثر سرعت ارسال داده به L2 cache معادل 176 مگابايت در هر ثانيه است. 

Synchronous dynamic random access memory) SDRM) از ويژگی "حالت پيوسته" (سنکرون با پالس های ساعت) بمنظور افزايش و بهبود کارائی استفاده می نمايد. بدين منظور زماني که سطر شامل داده مورد نظر باشد، به سرعت در بين ستون ها حرکت و بلافاصله پس از تامين داده، آن را خواهد خواند. SDRAM دارای سرعتی معادل پنج برابر سرعت حافظه های EDO بوده و امروزه در اکثر کامپيوترها استفاده می گردد. حداکثر سرعت ارسال داده به L2 cache معادل 528 مگابايت در ثانيه است. 

Rambus dynamic random access memory ) RDRAM) يک رويکرد کاملا" جديد نسبت به معماری قبلی DRAM است. اين نوع حافظه ها از Rambus in-line memory module ) RIMM) استفاده کرده که از لحاظ اندازه و پيکربندی مشابه يک DIMM استاندارد است. وجه تمايز اين نوع حافظه ها استفاده از يک گذرگاه داده با سرعت بالا با نام "کانال Rambus " است. تراشه های حافظه RDRAM بصورت موازی کار کرده تا بتوانند به سرعت 800 مگاهرتز دست پيدا نمايند. 

Credit card memory يک نمونه کاملا" اختصاصی از توليدکنندگان خاص بوده و شامل ماژول های DRAM بوده که دريک نوع خاص اسلات، در کامپيوترهای noteBook استفاده می گردد. 

PCMCIA memory card. نوع ديگر از حافظه شامل ماژول های DRAM بوده که در notebook استفاده می شود. 
FlashRam نوع خاصی از حافظه با ظرفيت کم برای استفاده در دستگاههائی نظير تلويزيون، VCR بوده و از آن به منظور نگهداری اطلاعات خاص مربوط به هر دستگاه استفاده می گردد. زمانيکه اين نوع دستگاهها خاموش باشند همچنان به ميزان اندکی برق مصرف خواهند کرد. در کامپيوتر نيز از اين نوع حافظه ها برای نگهداری اطلاعاتی در رابطه با تنظيمات هارد ديسک و ... استفاده می گردد. 

VideoRam ) VRAM) يک نوع خاص از حافظه های RAM بوده که برای موارد خاص نظير: آداپتورهای ويدئو و يا شتاب دهندگان سه بعدی استفاده می شود. به اين نوع از حافظه ها multiport dynamic random access memory) MPDRAM) نيز گفته می شود. علت نامگذاری فوق بدين دليل است که اين نوع از حافظه ها دارای امکان دستيابی به اطلاعات، بصورت تصادفی و سريال می باشند. VRAM بر روی کارت گرافيک قرار داشته و دارای فرمت های متفاوتی است. ميزان حافظه فوق به عوامل متفاوتی نظير: "وضوح تصوير" و "وضعيت رنگ ها " بستگی دارد.

نحوه نصب ماژولهای حافظه


در شکل های زیر انواع کارتهای حافظه و روش نصب ماژول ها و حافظه های مختلف به صورت کامل توضیح داده شده است. منظور از مازولها حافظه همان کارتهای حافظه است که در این شکل ها کارتهای ddr2 و SD RAM نشان داده شده. توجه داشته باشید که بعد از اتمام نصب برای خاطرجمع شدن از نصب کامل و اتصال مطمئن کارت حافظه را با دست مجددا فشار دهید. معمولا اگر کارت حافظه درست در جای خودش قرار بگیرد صدای تق میدهد
http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/8.jpg
http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/9.jpg
http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/11.jpg

و نحوه اتصال حافظه (DDR2 (Dram :

http://soshian.persiangig.com/image/%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1/12.jpg
حافظه 

حافظه با هدف ذخيره سازی اطلاعات (دائم، موقت)در کامپيوتر استفاده می گردد و انواع آن بسیار زیاد است. استفاده از حافظه صرفا" محدود به کامپيوترهای شخصی نبوده و در دستگاههای دیگری نظير: تلفن های سلولی، PDA، راديوهای اتومبيل، VCR، تلويزيون و ... نيز در ابعاد وسيعی از آنها استفاده بعمل می آيد. هر يک از دستگاههای فوق مدل های متفاوتی از حافظه را استفاده می نمايند. 


مبانی اوليه حافظه 

با اينکه می توان واژه " حافظه " را بر هر نوع وسيله ذخيره سازی الکترونيکی اطلاق کرد، ولی اغلب از واژه فوق برای مشخص نمودن حافظه های سريع با قابليت ذخيره سازی موقت استفاده بعمل می آيد. در صورتيکه پردازنده مجبور باشد برای بازيابی اطلاعات مورد نياز خود بصورت دائم از هارد ديسک استفاده نمايد، قطعا" سرعت عمليات پردازنده (با آن سرعت بالا) کند خواهد شد. درمورد حافظه مباحث مفصلی در سایت میکرورایانه انجام شده است به فهرست مقالات سایت میکرورایانه مراجعه کنید. از زماني که اطلاعات مورد نياز پردازنده در حافظه ذخيره گردد، سرعت عمليات پردازنده از نظر دستيابی به داده های مورد نياز بيشتر خواهد شد. از حافظه های متعددی بمنظور نگهداری موقت اطلاعات استفاده می شود. 

زماني که در هارد دیسک و يا حافظه دستگاههائی نظير صفحه کليد، اطلاعاتی موحود باشد که پردازنده قصد استفاده از آنان را داشته باشد، می بايست اطلاعات فوق از طريق حافظه RAM در اختيار پردازنده قرار گيرند. در ادامه پردازنده اطلاعات و داده های مورد نياز خود را در حافظه Cache و دستورالعمل های خاص عملياتی خود را در ثبات ها ذخيره می نمايد. 

تمام عناصر سخت افزاری (پردازنده، هارد ديسک، حافظه و ...) و عناصر نرم افزاری (سيستم عامل و...) به صورت يک گروه عملياتی به کمک يکديگر وظايف محوله را انجام می دهند. بدون شک در اين گروه "حافظه" دارای جايگاهی خاص است. از زماني که کامپيوتر روشن تا زماني که خاموش می گردد، پردازنده بصورت پيوسته و دائم از حافظه استفاده می نمايد. بلافاصله پس از روشن نمودن کامپيوتر اطلاعات اوليه (برنامه POST) از حافظه ROM فعال شده و در ادامه وضعيت حافظه از نظر سالم بودن بررسی می گردد (عمليات سريع خواندن، نوشتن). در مرحله بعد کامپيوتر BIOS را ازطريق ROM فعال خواهد کرد. BIOS اطلاعات اوليه و ضروری در رابطه با دستگاههای ذخيره سازی، وضعيت درايوی که می بايست فرآيند بوت از آنجا آغاز گردد، امنيت و ... را مشخص می نمايد.

در مرحله بعد سيستم عامل از هارد به درون حافظه RAM استفرار خواهد يافت. بخش های مهم و حياتی سيستم عامل تا زماني که سيستم روشن است در حافظه ماندگار خواهند بود. در ادامه و زماني که يک برنامه توسط کاربر فعال می گردد، برنامه فوق در حافظه RAM مستقر خواهد شد. پس از استقرار يک برنامه در حافظه و آغاز سرويس دهی توسط برنامه مورد نظر در صورت ضرورت فايل های مورد نياز برنامه فوق، در حافظه مستفر خواهند شد. و در نهايت زماني که به حيات يک برنامه خاتمه داده می شود (Close) و يا يک فايل ذخيره می گردد، اطلاعات بر روی يک رسانه ذخيره سازی دائم ذخيره و نهايتا" حافظه از وجود برنامه و فايل های مرتبط، پاکسازی خواهد شد.

همانگونه که اشاره گرديد در هر زمان که اطلاعاتی، مورد نياز پردازنده باشد، می بايست اطلاعات درخواستی در حافظه RAM مستقر تا زمينه استفاده از آنان توسط پردازنده فراهم گردد. چرخه درخواست اطلاعات موجود در RAM توسط پردازنده، پردازش اطلاعات توسط پردازنده و نوشتن اطلاعات جديد در حافظه يک سيکل کاملا" پيوسته بوده و در اکثر کامپيوترها سيکل فوق ممکن است در هر ثانيه ميليون ها مرتبه تکرار گردد.

نياز به سرعت دليلی بر وجود حافظه های متنوع 

چرا حافظه در کامپيوتر تا بدين ميزان متنوع و متفاوت است ؟ در پاسخ می توان به موارد ذيل اشاره نمود: 

پردازنده های با سرعت بالا نيازمند دستيابی سريع و آسان به حجم بالائی از داده ها بمنظور افزايش بهره وری و کارآئی خود می باشند. در صورتيکه پردازنده قادر به تامين و دستيابی به داده های مورد نياز در زمان مورد نظر نباشد، می بايست عمليات خود را متوقف و در انتظار تامين داده های مورد نياز باشد. پردازنده های جديد و با سرعت يک گيگا هرتز به حجم بالائی از داده ها (ميليارد بايت در هر ثانيه) نياز خواهند داشت. پردازنده هائی با سرعت اشاره شده گران قيمت بوده و قطعا" اتلاف زمان آنان مطلوب و قابل قبول نیست.

طراحان کامپيوتر به منظور حل مشکل فوق ايده "لايه بندی حافظه" را مطرح نموده اند. در اين راستا از حافظه های گران قيمت با ميزان اندک استفاده و از حافظه های ارزان تر در حجم بيشتری استفاده به عمل می آيد. ارزانترين حافظه متداول ، هارد ديسک است. هارد ديسک يک رسانه ذخيره سازی ارزان قيمت با توان ذخيره سازی حجم بالائی از اطلاعات است. با توجه به ارزان بودن فضای ذخيره سازی اطلاعات بر روی هارد، اطلاعات مورد نظر بر روی آنها ذخيره و با استفاده از روش های متفاوتی نظير: حافظه مجازی می توان به سادگی و به سرعت و بدون نگرانی از فضای فيزيکی حافظه RAM، از آنها استفاده نمود. 

حافظه RAM سطح دستيابی بعدی در ساختار سلسله مراتبی حافظه است. اندازه بيت های قابل پردازش يک پردازنده نشان دهنده تعداد بايت هائی از حافظه است که در يک لحظه می توان به آنها دستيابی داشت. مثلا" يک پردازنده شانزده بيتی، قادر به پردازش دو بايت داده در هر لحظه است. مگاهرتز واحد سنجش سرعت پردازش در پردازنده ها است و معادل "ميليون در هر ثانيه" است. مثلا" يک کامپيوتر 32 بيتی پنتيوم III با سرعت 800-MHz، قادر به پردازش چهار بايت بصورت همزمان و 800 ميليون بار در ثانيه است.

حافظه RAM به تنهائی دارای سرعت مناسب برای هم زمان شدن با سرعت پردازنده نيست. بهمين دليل است که از حافظه های Cache استفاده می گردد. بديهی است هر اندازه که سرعت حافظه RAM بالا باشد مطلوب تر خواهد بود. اغلب تراشه ها امروزه دارای سرعتی بين 50 تا 70 Nanoseconds می باشند. سرعت خواندن و يا نوشتن در حافظه ارتباط مستقيم با نوع حافظه استفاده شده دارد.

ممکن است از حافظه های DRAM, SDRAM, RAMBUS استفاده گردد. سرعت RAM توسط پهنا و سرعت BUS، کنترل می گردد. پهنای BUS، تعداد بايتی که می توان بطور همزمان برای پردازنده ارسال کرد را مشخص می کند و سرعت BUS به تعداد دفعاتی که می توان يک گروه از بيت ها را در هر ثانيه ارسال کرد اطلاق می گردد. سيکل منظم حرکت داده ها از حافظه بسمت پردازنده را Bus Cycle می گويند مثلا" يک Bus با وضعيت: 100 MHz و 32 بيت، بصورت تئوری قادر به ارسال چهار بايت به پردازنده و يکصد ميليون مرتبه در هر ثانيه است. در حاليکه يک BUS شانرده بيتی 66MHZ بصورت تئوری قادر به ارسال دو بايت و 66 ميليون مرتبه در هر ثانيه است. با توجه به مثال فوق مشاهده می گردد که با تغيير پهنای BUS از شانزده به سي و دو و سرعت از 66 MHz به 100 MHz سرعت ارسال داده برای پردازنده سه برابر گرديد.
مبانی حافظه های RAM 

حافظه RAM، يک تراشه مدار مجتمع (IC) بوده که از ميليون ها ترانزيستور و خازن تشکيل شده است. در اغلب حافظه ها با استفاده و به کارگيری يک خازن و يک ترانزيستور می توان يک سلول را ايجاد کرد. سلول فوق قادر به نگهداری يک بيت داده خواهد بود. خازن اطلاعات مربوط به بيت را که يک و يا صفر است، در خود نگهداری خواهد کرد. عملکرد ترانزيستور مشابه يک سوئيچ بوده که امکان کنترل مدارات موجود بر روی تراشه حافظه را به منظور خواندن مقدار ذخيره شده در خازن و يا تغيير وضعيت مربوط به آن، فراهم می نمايد. خازن مشابه يک ظرف (سطل) بوده که قادر به نگهداری الکترون ها است. بمنظور ذخيره سازی مقدار "يک" در حافظه، ظرف فوق می بايست از الکترون ها پر گردد. برای ذخيره سازی مقدار صفر، می بايست ظرف فوق خالی گردد.

مسئله مهم در رابطه با خازن، نشت اطلاعات است (وجود سوراخ در ظرف) بدين ترتيب پس از گذشت چندين ميلی ثانيه يک ظرف مملو از الکترون تخليه می گردد. بنابراين بمنظور اينکه حافظه بصورت پويا اطلاعات خود را نگهداری نمايد، می بايست پردازنده و يا "کنترل کننده حافظه" قبل از تخليه شدن خازن، مکلف به شارژ مجدد آن بمنظور نگهداری مقدار "يک" باشند. بدين منظور کنترل کننده حافظه اطلاعات حافظه را خوانده و مجددا" اطلاعات را بازنويسی می نمايد. عمليات فوق (Refresh )، هزاران مرتبه در يک ثانيه تکرار خواهد شد. علت نامگذاری DRAM بدين دليل است که اين نوع حافظه ها مجبور به بازخوانی اطلاعات بصورت پويا خواهند بود. فرآيند تکراری " بازخوانی / بازنويسی اطلاعات" در اين نوع حافظه ها باعث می شود که زمان تلف شده و سرعت حافظه کند گردد. 

سلول های حافظه بر روی يک تراشه سيليکون و بصورت آرايه ای مشتمل از ستون ها (خطوط بيت) و سطرها (خطوط کلمات) تشکيل می گردند. نقطه تلاقی يک سطر و ستون بيانگر آدرس سلول حافظه است . 

حافظه های DRAM با ارسال يک شارژ به ستون مورد نظر باعث فعال شدن ترانزيستور در هر بيت ستون، خواهند شد. در زمان نوشتن خطوط سطر شامل وضعيتی خواهند شد که خازن می بايست به آن وضعيت تبديل گردد. در زمان خواندن Sense-amplifier، سطح شارژ موجود در خازن را اندازه گيری می نمايد. در صورتيکه سطح فوق بيش از پنجاه درصد باشد مقدار "يک" خوانده شده و در غيراينصورت مقدار "صفر" خوانده خواهد شد. مدت زمان انجام عمليات فوق بسيار کوتاه بوده و بر حسب نانوثانيه (يک ميلياردم ثانيه) اندازه گيری می گردد. تراشه حافظه ای که دارای سرعت 70 نانوثانيه است، 70 نانو ثانيه طول خواهد کشيد تا عمليات خواندن و بازنويسی هر سلول انجام گیرد. 

سلول های حافظه در صورتي که از روش هائی به منظور اخذ اطلاعات موجود در سلول ها استفاده ننمايند، به تنهائی فاقد ارزش خواهند بود. بنابراين لازم است سلول های حافظه دارای يک زيرساخت کامل حمايتی از مدارات خاص ديگر باشند. مدارات فوق عمليات زير را انجام خواهند داد: 

مشخص نمودن هر سطر و ستون (انتخاب آدرس سطر و انتخاب آدرس ستون) 

نگهداری وضعيت بازخوانی و باز نويسی داده ها (شمارنده) 

خواندن و برگرداندن سيگنال از يک سلول (Sense amplifier) 

اعلام خبر به يک سلول که می بايست شارژ گردد و يا ضرورتی به شارژ وجود ندارد (Write enable) 

ساير عمليات مربوط به "کنترل کننده حافظه" شامل مواردی نظير: مشخص نمودن نوع سرعت، ميزان حافظه و بررسی خطاء است.

حافظه های SRAM دارای يک تکنولوژی کاملا" متفاوت می باشند. در اين نوع از حافظه ها از فليپ فلاپ برای ذخيره سازی هر بيت حافظه استفاده می گردد. يک فليپ فلاپ برای يک سلول حافظه، از چهار تا شش ترانزيستور استفاده می کند. حافظه های SRAM نيازمند بازخوانی / بازنويسی اطلاعات نخواهند بود، بنابراين سرعت اين نوع از حافظه ها بمراتب از حافظه های DRAM بيشتر است. با توجه به اينکه حافظه های SRAM از بخش های متعددی تشکيل می گردد، فضای استفاده شده آنها بر روی يک تراشه بمراتب بيشتر از يک سلول حافظه از نوع DRAM خواهد بود. در چنين مواردی ميزان حافظه بر روی يک تراشه کاهش پيدا کرده و همين امر می تواند باعث افزايش قيمت اين نوع از حافظه ها گردد. بنابراين حافظه های SRAM سريع و گران بوده و حافظه های DRAM ارزان و کند می باشند. با توجه به موضوع فوق، از حافظه های SRAM بمنظور افزايش سرعت پردازنده (استفاده به عنوان Cache) و از حافظه های DRAM برای فضای حافظه RAM در کامپيوتر استفاده می گردد.
حافظه ROM 

حافظه ROM يک نوع مدار مجتمع (IC) است که در زمان ساخت داده هائی در آن ذخيره می گردد. اين نوع از حافظه ها علاوه بر استفاده در کامپيوترهای شخصی در ساير دستگاههای الکترونيکی نيز به خدمت گرفته می شوند. حافظه های ROM از لحاظ تکنولوژی استفاده شده، دارای انواع زير می باشند: 

ROM 
PROM 
EPROM 
EEPROM 
Flash Memory 

هر يک از مدل های فوق دارای ويژگی های منحصر به فرد خود می باشند. حافظه های فوق در موارد زير دارای ويژگی مشابه می باشند: 

داده های ذخيره شده در اين نوع تراشه ها "غير فرار" بوده و پس از خاموش شدن منبع تامين انرژی اطلاعات خود را از دست نمی دهند. 

داده های ذخيره شده در اين نوع از حافظه ها غير قابل تغيير بوده و يا اعمال تغييرات در آنها مستلزم انجام عمليات خاصی است.

ماژول های حافظه 

تراشه های حافظه در کامييوترهای شخصی در آغاز از يک پيکربندی مبتنی بر Pin با نام (DIP(Dual line Package استفاده می کردند. اين پيکربندی مبتنی بر پين، لحيم کاری درون حفره هائی برروی برد اصلی کامپيوتر و يا اتصال به يک سوکت بوده که خود به برد اصلی لحيم شده بود. با افزايش حافظه، تعداد تراشه های مورد نياز، فضای زيادی از برد اصلی را اشغال می کردند. از روش فوق تا زماني که ميزان حافظه حداکثر دو مگا بايت بود، استفاده می گرديد. 

راه حل مشکل فوق، استقرار تراشه های حافظه به همراه تمام عناصر و اجزای حمايتی در يک برد مدار چاپی مجزا (Printed Circut Board) بود. برد فوق (بانک حافظه) در ادامه با استفاده از يک نوع خاص از Connector به برد اصلی متصل می گرديد. اين نوع تراشه ها اغلب از يک پيکربندی pin با نام Small Outline J-lead ) SOJ )استفاده می کردند. برخی از توليدکنندگان ديگر که تعداد آنها اندک است از پيکربندی ديگری با نام Thin Small Outline Package ) TSOP) استفاده می نمايند. تفاوت اساسی بين اين نوع پين های جديد و پيکربندی DIP اوليه در اين است که تراشه های SOJ و TSOR بصورت surface-mounted در PCB هستند. به عبارت ديگر پين ها مستقيما" به سطح برد لحيم می شوند. (نه داخل حفره ها و يا سوکت). 

تراشه های حافظه از طريق کارت هائی که " ماژول " ناميده می شوند قابل دستيابی و استفاده می باشند. شايد تاکنون با مشخصات يک سيستم که ميزان حافظه خود را بصورت 32 * 8 , يا 16 * 4 اعلام می نمايد، برخورده کرده باشيد.اعداد فوق تعداد تراشه ها ضربدر ظرفيت هر يک از تراشه ها را که بر حسب مگابيت اندازه گيری می گردند، نشان می دهد. به منظور محاسبه ظرفيت، می توان با تقسيم نمودن آن بر هشت ميزان مگابايت را بر روی هر ماژول مشخص کرد. مثلا" يک ماژول 32 * 4، بدين معنی است که ماژول دارای چهار تراشه 32 مگابيتی است. با ضرب 4 در 32 عدد 128 (مگابيت) بدست می آيد. اگر عدد فوق را بر هشت تقسيم نمائيم به ظرفيت 16 مگابايت خواهيم رسيد. 

نوع برد و Connector استفاده شده در حافظه های RAM، طی پنج سال اخير تفاوت کرده است. نمونه های اوليه اغلب بصورت اختصاصی توليد می گرديدند. توليد کنندگان مختلف کامپيوتر بردهای حافظه را به گونه ای طراحی می کردند که صرفا" امکان استفاده از آنها در سيستم های خاصی وجود داشت.

در ادامه ( SIMM ( Single in-line memory module مطرح گرديد. اين نوع از بردهای حافظه از 30 پين کانکتور استفاده کرده و طول آن حدود 3/5 اينچ و عرض آن يک اينچ بود (يازده سانتيمتر در 2/5 سانتيمتر). در اغلب کامپيوترها می بايست بردهای SIMM بصورت زوج هائی که دارای ظرفيت و سرعت يکسان باشند، استفاده گردد. علت اين است که پهنای گذرگاه داده بيشتر از يک SIMM است. مثلا" از دو SIMM هشت مگابايتی برای داشتن 16 مگابايت حافظه بر روی سيستم استفاده می گردد. هر SIMM قادر به ارسال هشت بيت داده در هر لحظه خواهد بود با توجه به اين موضوع که گذرگاه داده شانزده بيتی است از نصف پهنای باند استفاده شده و اين امر منطقی بنظر نمی آيد. در ادامه بردهای SIMM بزرگتر شده و دارای ابعاد 25/4 * 1 شدند (11 سانتيمتر در 2/5 سانتيمتر) و از 72 پين برای افزايش پهنای باند و امکان افزايش حافظه تا ميزان 256 مگابايت بدست آمد. 

بموازات افزايش سرعت و ظرفيت پهنای باند پردازنده ها، توليدکنندگان از استاندارد جديد ديگری با نام dual in-line memory module ) DIMM) استفاده کردند. اين نوع بردهای حافظه دارای 168 پين و ابعاد 1*5/4 اينچ (تقريبا" 14 سانتيمتر در 2/5 سانتيمتر) بودند. ظرفيت بردهای فوق در هر ماژول از هشت تا 128 مگابايت را شامل و می توان آنها را بصورت تک (زوج الزامی نيست) استفاده کرد. اغلب ماژول های حافظه با 3/3 ولت کار می کنند. (در سيستم های مکينتاش از 5 ولت استفاده می نمايند.) يک استاندارد جديد ديگر با نام Rambus in-line memory module، RIMM از نظر اندازه و پين با DIMM قابل مقايسه است ولی بردهای فوق، از يک نوع خاص گذرگاه داده حافظه ای برای افزايش سرعت استفاده می نمايند. 

اغلب بردهای حافظه در کامپيوترهای دستی (notebook) از ماژول های حافظه کاملا" اختصاصی استفاده می نمايند ولی برخی از توليدکنندگان حافظه از استاندارد small outline dual in-line memory module) SODIMM استفاده می نمايند. بردهای حافظه SODIMM دارای ابعاد 1*2 اينچ (5 سانتيمنتر در 5 /2 سانتيمنتر) بوده و از 144 پين استفاده می نمايند. ظرفيت اين نوع بردها ی حافظه در هر ماژول از 16 مگابايت تا 256 مگابايت می تواند باشد.

حافظه PROM 

توليد تراشه های ROM مستلزم صرف وقت و هزينه بالائی است. بدين منظور اغلب توليد کنندگان، نوع خاصی از اين نوع حافظه ها را که PROM) Programmable Read-Only Memory ) ناميده می شوند، توليد می کنند. اين نوع از تراشه ها با محتويات خالی با قيمت مناسب عرضه شده و می تواند توسط هر شخص با استفاده از دستگاههای خاصی که Programmer ناميده می شوند، برنامه ريزی گردند. ساختار اين نوع از تراشه ها مشابه ROM بوده با اين تفاوت که در محل برخورد هر سطر و ستون از يک فيوز (برای اتصال به يکديگر) استفاده می گردد. يک شارژ که از طريق يک ستون ارسال می گردد از طريق فيوز به يک سلول پاس داده شده و بدين ترتيب به يک سطر Grounded که نماينگر مقدار "يک" است، ارسال خواهد شد. با توجه به اينکه تمام سلول ها دارای يک فيوز می باشند، درحالت اوليه (خالی)، يک تراشه PROM دارای مقدار اوليه "يک" است. بمنظور تغيير مقدار يک سلول به صفر، از يک Programmer برای ارسال يک جريان خاص به سلول مورد نظر، استفاده می گردد. ولتاژ بالا، باعث قطع اتصال بين سطر و ستون (سوختن فيوز) خواهد شد. فرآيند فوق را "Burning the PROM " می گويند. 

حافظه های PROM صرفا" يک بار قابل برنامه ريزی هستند. حافظه های فوق نسبت به RAM شکننده تر بوده و يک جريان حاصل از الکتريسيته ساکن، می تواند باعث سوخته شدن فيور در تراشه شده و مقدار يک را به صفر تغيير نمايد. از طرف ديگر (مزايا) حافظه ای PROM دارای قيمت مناسب بوده و برای نمونه سازی داده برای يک ROM، قبل از برنامه ريزی نهائی، کارآئی مطلوبی دارد.
حافظه EPROM 

استفاده کاربردی از حافظه های ROM و PROM با توجه به نياز به اعمال تغييرات در آنها قابل تامل است (ضرورت اعمال تغييرات و اصلاحات در اين نوع حافظه ها می تواند به صرف هزينه بالائی منجر گردد) حافظه های EPROM) Eraseable programmable read-only memory) پاسخی مناسب به نياز های مطرح شده است (نياز به اعمال تغييرات) تراشه های EPROM را می توان چندين مرتبه باز نويسی کرد. پاک نمودن محتويات يک تراشه EPROM مستلزم استفاده از دستگاه خاصی است که باعث ساطع کردن يک فرکانس خاص ماوراء بنفش(نور) باشد. پيکربندی اين نوع از حافظه ها مستلزم استفاده از يک EPROM Programer است که ولتاژd را در يک سطح خاص ارائه نمايد (با توجه به نوع EPROM استفاده شده) اين نوع حافظه ها، نيز دارای شبکه ای مشتمل از سطر و ستون می باشند. در يک EPROM سلول موجود در نقظه برخورد سطر و ستون دارای دو ترانزيستور است .ترانزيستورهای فوق توسط يک لايه نازک اکسيد از يکديگر جدا شده اند. يکی از ترانزيستورها Floating Gate و ديگری Control Gate ناميده می شود. Floating Gate صرفا" از طريق Control Gate به سطر مرتبط است. مادامي که لينک برقرار باشد سلول دارای مقدار يک خواهد بود. به منظور تغيير مقدار فوق به صفر به فرآيندی با نام Fowler-Nordheim tunneling نياز است. Tunneling بمنظور تغيير محل الکترون های Floating gate استفاده می گردد. يک شارژ الکتريکی بين 10 تا 13 ولت به floating gate داده می شود. شارژ از ستون شروع و پس از ورود به floating gate در ground تخليه خواهد گرديد. شارژ فوق باعث می گردد که ترانزيستور floating gate مشابه يک "پخش کننده الکترون " رفتار نمايد. الکترون های مازاد، فشرده شده و در سمت ديگر لايه اکسيد به دام افتاده و يک شارژ منفی را باعث می گردند. الکترون های شارژ شده منفی، بعنوان يک صفحه عايق بين control gate و floating gate رفتار می نمايند. دستگاه خاصی با نام Cell sensor سطح شارژ پاس داده شده به floating gate را مونيتور خواهد کرد. در صورتيکه جريان گيت بيشتر از 50 درصد شارژ باشد در اينصورت مقدار "يک" را دارا خواهد بود. زماني که شارژ پاس داده شده از 50 درصد آستانه عدول نموده مقدار به "صفر" تغيير پيدا خواهد کرد. يک تراشه EPROM دارای گيت هائی است که تمام آنها باز بوده و هر سلول آن مقدار يک را دارا است. 

بمنظور باز نويسی يک EPROM می بايست در ابتدا محتويات آن پاک گردد. برای پاک نمودن می بايست يک سطح از انرژی زياد را بمنظور شکستن الکترون های منفی Floating gate استفاده کرد. در يک EPROM استاندارد، عمليات فوق از طريق اشعه ماوراء بنفش با فرکانس 253/ 7 انحام می گردد. فرآيند حذف در EPROM انتخابی نبوده و تمام محتويات آن حذف خواهد شد. برای حذف يک EPROM می بايست آن را از محلی که نصب شده، جدا کرده و به مدت چند دقيقه زير اشعه ماوراء بنفش دستگاه پاک کننده EPROM قرار داد.

 

خرابی در سیستم


در صورت بروز مشکلات زیر می توانید به منبع تغذیه خود شک کنید:

1- افزایش زمان ضبط دیسک های نوری توسط درایور نوری که یکی از مهمترین دلایل کاهش ولتاژ توسط پاور است.

2- افزایش دمای بیش از حد پردازنده که یکی از نشانه های عدم تامین توان مناسب برای فعالیت پردازنده است.

3- مشکل در تشخیص اجزا و قطعات توسط مادربرد مانند هارد دیسک، درایور نوری و قطعات دیگر که به علت عدم تامین انرژی کافی برای مادربرد و اختلال در کار پل جنوبی (South Bridge) به وجود می آید. (پل جنوبی یا South Bridge چیپ ستی در مادربرد است که وظیفه ی کنترل قطعاتی مانند درایو نوری، هارد دیسک و فلاپی را بر عهده دارد، همچنین این چیپ ست کنترل شکاف های PCI ، SA موجود روی مادربرد را نیز در اختیار دارد.)

4- هنگ مکرر سیستم و کاهش کارایی.

نکاتی که باید در خرید پاور به آن توجه کرد


1- توان پاور: 
یکی از اولین فاکتور ها در خرید پاور توجه به توان آن است که در تامین انرژی مورد نیاز سیستم، اهمیت به سزایی دارد . توان خروجی پاور به دو صورت روی آن ثبت می شود: 1- توان واقعی یا نامی(نرمال) و توان حداکثر.

توان واقعی به توانی اطلاق می شود که منبع تغذیه کامپیوتر بدون تحمل فشار در شرایط عادی قادر به تامین آن است، در صورتی که منبع تغذیه با توان حداکثر می تواند در حدود 1 دقیقه کار کند و بعد از آن از کار می افتد. به طور متوسط در کل حدود 150 وات بین توان واقعی و توان حداکثر اختلاف وجود دارد. مثلا منبع تغذیه باتوان 580 وات دارای توان حداکثر 730 وات است و توانایی تحمل بیش از این ندارد. پس همیشه در خرید پاور به میزان توان واقعی آن توجه کنید که ملاک توان اصلی و واقعی پاور کامپیوتر شناخته می شود.

در صورتی که روی یک پاور، میزان توان واقعی ثبت نشده باشد باید به میزان توان خروجی هر شاخه توجه کرد. به این صورت که باید دید پاور مورد نظر روی خروجی 12 و یا 5 ولت توانایی پشتیبانی از چند آمپر را دارد که این عامل نشان دهنده توان واقعی هر ولتاژ خروجی است.

همیشه در خرید منبع تغذیه به این نکته توجه کنید که حداکثر توان واقعی پاور شما در حدود 20 درصد بیشتر از توان مصرفی سیستم شما باشد زیرا این عامل باعث افزایش کارایی و همچنین ماندگاری سیستم و پاور در شرایط سخت کاری می شود. اما در صورتی که توان مصرفی سیستم شما بیشتر از توان واقعی باشد در شرایطی که سیستم به برق بیشتری برای پردازش های پیچیده نیاز داشته باشد، منبع تغذیه برای تامین برق مصرفی تحت فشار قرار گرفته و در این صورت با افت ولتاژ، سیستم با ولتاژ های نامناسبی تغذیه شده که خود باعث بروز مشکلات زیاد در سیستم خواهد شد.


2- ورژن پاور:

شاید این سوال پیش بیاد که مگر پاور هم ورژن بندی دارد؟ بله پاور هم همانند بسیاری از قطعات دارای ورژن است و بر اساس این ورژن قابلیت های آن تغییر می کند. پاورهای امروزی که در بازار کشورمان وجود دارد دارای نسخه های 2/1 و 2/2 هستند این پاور ها دارای مشخصاتی مانند کانکتور برق 24 پین برای تامین برق مادربورد، وجود کانکتور PCI-E و تعدادی فاکتور های امنیتی جدید در ساختار خود هستند که باعث محافظت از سیستم می شود اما در نسخه های جدید پاور علاوه بر 24 پین یک کانکتور برق 8 پین نیز وجود دارد که به جای کانکتور 4 پین کنار پردازنده قرار داده شده است و وظیفه آن تامین انرژی مورد نیاز پردازنده است پس باید به این نکته توجه کرد، پاوری که خریداری می کنید با قابلیت های مادربورد شما هماهنگی داشته باشد به همین دلیل قبل از خرید پاور، نوع و مدل مادربرد خود را مشخص و بر اساس آن اقدام به خرید پاور مناسب کنید.

منبع تغذیه های جدید دارای کانکتور 8 پین برای اتصال با مادربرد است، در واقع این کانکتور 8 پین، برای مادربورد های جدیدی ساخته شده که از چیپ ست های 975 و 955 بهره می برند. (در این مورد مطالبی در تالار گفتگوی سایت میکرو رایانه وجود دارد) زیرا توان مصرفی در پردازنده های جدید اینتل به قدری بالاست که دیگر یک کانکتور 4 پین توانایی پشتیبانی از این مقدار انرژی را ندارد.

3- نکات امنیتی در پاور:

پاور های امروزی هر روز قوی تر می شوند و این قوی تر شدن نیاز به توجه بیشتری برای امنیت سیستم دارد زیرا کوچکترین خطا در تنظیم ولتاژ و عدم قطع در شرایط نادرست می تواند باعث بروز مشکلات اساسی در قطعات سخت افزاری شود به همین علت شرکت های سازنده ی پاور هر روزه تکنولوژی های جدیدی را در ساختار منابع تغذیه خود قرار می دهند تا باعث افزایش امنیت آنها شوند.

یکی از این نکات که بدون نیاز به هیچ تخصص خاصی قابل درک است توجه به تفکیک سازی کابل های برق پاور است به طوری که با کمی توجه به پاور های قدرتمند خواهید دید که روی کابل های خروجی آنها یک لایه جدا کننده کشیده شده است. این عامل باعث افزایش امنیت منبع تغذیه می شود زیرا توان خروجی روی هر خروجی در منبع تغذیه های امروزی بالاست و در صورت عدم وجود این امکانات، امکان بروز مشکلات در پاور وجود دارد همچنین توجه به طراحی مناسب کانکتور های پاور هم در امنیت آن نقش دارد. زیرا نصب اشتباهی این کانکتورها روی قطعات، می تواند باعث بروز ایراداتی در قطعات و حتی مشکل تامین انرژی مورد نیاز سیستم شود.

PFC :امروزه دیگر روی اکثر پاور های موجود در بازار گزینه ی PFC نوشته شده است. در واقع PFC یا Power Factor Correction بخشی در پاور است که با تصحیح و هماهنگی ولتاژ ورودی، باعث استفاده بهینه از توان ورودی و کاهش توان مصرفی توسط پاور می شود. این عامل امروزه در تمام پاور های حرفه ای به عنوان یکی از فاکتور های استاندارد برای پاور شناخته می شود و با وجود این فاکتور مصرف برق توسط پاور های کامپیوتر به مقدار چشمگیری کاهش می یابد.


4- طراحی پاور:

طراحی پاور یکی از عوامل مهم در افزایش کارایی پاور است. مثلا نحوه خنک شدن، زیرا در صورتی که یک پاور از طراحی مناسب برخوردار نباشد در هنگام فعالیت قادر نخواهد بود گرمای تولیدی خود را به طور مناسب خارج کند که در این حالت بروز مشکلاتی مانند تغییر ولتاژ های خروجی به علت افزایش دمای داخلی پاور و یا افزایش دمای قطعات داخلی کیس به علت انتقال گرما به فضای داخلی کیس و حتی کاهش عمر قطعات و کارایی سیستم تا حد چشمگیری خواهد شد.

پس با توجه به این مسائل همیشه باید پاوری خریداری کرد که بهترین تهویه و طراحی را داشته باشد تا در شرایط سخت بتواند بدون کمترین مشکلی فعالیت کند. امروزه اکثر پاور های جدید مجهز به یک فن 12در 12 سانتی متر هستند که به راحتی می تواند جریان هوای لازم برای خنک کردن قطعات پاور را به وجود آورد.

اجزاء سازنده منبع تغذيه


۱- مبدل: كه ولتاژ را تغيير مي دهد. 
۲- يك سو كننده: جريان متناوب را به جريان مستقيم تبديل مي كند. 
۳- صافي يا پالايشگر: امواج را مي گيرد. 
منبع تغذيه قبل از روشن شدن رايانه چند آزمايش انجام مي دهد، سپس در صورت صحيح بودن سيستم سيگنال را به مادربرد مي رساند. اين حالت حفظ مي شود و در صورتي كه به هر علتي از بين برود دستگاه ريست مي شود. 

منبع تغذيه به دو صورت خطي و كليدي ( سوئیچ مد ) طراحي مي شود كه نوع خطي ترانس هاي بزرگتر دارند و نوع كليدي از نظر اندازه و وزن و انرژي بهتر از خطي مي باشند. منبع تغذيه هاي خوب يك مقاومت دارند كه از خراب شدن آن جلوگيري مي كند.

پاور قود Power good


براي اينكه رايانه قبل از آمادگي منبع تغذيه روشن نگردد سيگنالي به نام (Power good) درستي ولتاژ و يا قدرت مطلوب به مادربرد ارسال مي شود. 
تا قبل از رسيدن آن مادربرد كاري انجام نمي دهد و در صورتي كه مشكلي در برق به وجود آيد و جرقه اي توليد شود منبع تغذيه اين سيگنال را قطع مي كند و مادربرد كار نخواهد كرد. 

۶- سيگنال روشن بودن: در منبع تغذيه هاي جديد تابعي تعريف شده است كه به وسيله نرم افزارها مي توان منبع تغذيه را كنترل نمود. اين سيگنال با عنوان روشن بودن و يا تأمين قدرت (Power On) مادربرد را كنترل مي كند و باعث روشن شدن منبع تغذيه مي شود. 

۷- سيگنال ۵+ ولتي توقف Standby ۵ V : اين ولتاژ در حالت خاموش بودن رايانه وجود دارد، اين سيگنال به صورت نرم افزاري در حالت خاموش بودن رايانه آن را روشن مي كند. 

انواع منبع تغذيه


منبع تغذيه داراي ابعاد و شكل هاي مختلفي مي باشند، كه بايد با جعبه و مادربرد نصب شده در داخل جعبه رايانه همخواني و سازگاري داشته باشد. بنابراين، اين سه قطعه بايد از يك نوع باشند. انواع اين اجزاء عبارتند از: 
۱- XT 
۲- AT desk خوابيده يا روميزي 
۳-AT tower برجي يا ايستاده 
۴- Baby AT 
۵- Rectifierباريك، نقلي 
۶- ATX 

زماني كه رايانه XT توسط شركت آي بي ام به بازار عرضه شد منبع تغذيه آن شبيه منبع تغذيه هاي قبلي بود، درصورتي كه توان خروجي آنها دو برابر قبلي ها بود. پس از آن زماني كه آي بي ام رايانه AT را ساخت از يك منبع تغذيه بزرگتر براي آن استفاده نمود كه داراي اشكال مختلفي بود. از اين نوع منبع تغذيه استقبال زيادي شد تا جايي كه هنوز نيز در سيستم هاي امروزي از آن استفاده مي شود. 

نوع برجي يا ايستاده سيستم هاي AT مشابه سيستم هاي خوابيدهAT است. مشخصات منبع تغذيه و مادربرد در سيستم هاي روميزي با مشخصات منبع تغذيه و مادربرد در سيستم هاي برجي فرقي ندارد. تنها فرق آنها كليد هاي برق در مكانهاي متفاوت مي باشد. 

نوع ديگري از AT وجود دارد كه كوچكتر از نوع ايستاده مي باشد و منبع تغذيه آن نيز كوچك مي باشد، كه بچه اي تي نام دارد. منبع تغذيه جعبه هاي نقلي نيز از نظر مشخصات ظاهري با ساير منبع تغذيه ها تفاوت دارند. در اين نوع جعبه ها مادربردها داراي استاندارد مشخصي نيستند، اما منبع تغذيه آنها داراي استانداردهاي مشخصي است و قابل تعويض نيز مي باشد. 

منبع تغذيه ATX مانند منبع تغذيه نقلي مي باشد، بنابراين، اين دو قابل جابجايي مي باشند. نوع منبع تغذيه ATX داراي مشخصات و مزاياي زير مي باشد: 

۱- سيگنال هاي 
(a) روشن بودن - Power on 
(b) سيگنال هاي توقفStandby (Soft Power) ۵ V 
در اين نوع منبع تغذيه وجود دارد. 

۲- امكان حذف گرماگير (Heat Sink) از روي پردازنده در اين نوع وجود دارد. 

۳- مادربردها در اين نوع حاوي قطعاتي به نام تنظيم گر (Regulator) جهت توليد ولتاژ ۳/۳ ولتي نمي باشند به اين علت كه رابط منبع تغذيه به مادربرد ،خود داراي ولتاژ ۳/۳ ولت است. 

۴- تهويه به سمت داخل منبع تغذيه صورت مي گيرد تا مادربرد خنك شود. اين كار خود باعث خنك شدن قطعات داخلي و تميز شدن سطح قطعات داخلي مي گردد. 

۵- فيش اتصال منبع تغذيه مادربرد۲۰ پايه اي است و امكان اتصال برعكس آن وجود ندارد.

منبع تغذيه داراي ولتاژهاي گوناگون با توان هاي مختلف مي باشند مانند: 

۱- ولتاژ ۵+ ولت: اين نوع ولتاژ توسط تمام مادربردها، مدارها و وسايل جانبي رايانه مورد استفاده قرار مي گيرد و رنگ سيم هاي آنها قرمز مي باشد. 

۲- ولتاژ ۱۲+ ولت: موتور هاردديسك و وسايل مشابه با آن از اين ولتاژ استفاده مي كنند كه در مادربردهاي جديدتر ديگر آن را به كار نمي برند. مدارهاي درگاه هاي سريال نيز از اين ولتاژ استفاده مي كنند. سيم آن نيز معمولاً زرد رنگ است و گاهي اوقات به رنگ قرمز نيز ديده مي شود. 

۳- ولتاژ هاي ۵- و ۱۲- ولت: اين دو ولتاژ در رايانه هاي قديمي وجود داشت، اما اكنون در منبع تغذيه ها نصب مي شوند. اين دو داراي جرياني كمتر از يك آمپر هستند. 

۴- ولتاژ ۳/۳+ ولت: پردازنده هاي جديد از ولتاژ ۳/۳ ولت و يا كمتر استفاده مي كنند، در صورتي كه پردازنده هاي قديمي از ولتاژ ۵+ استفاده مي كردند. در پردازنده هاي جديد ولتاژ مورد نياز پردازنده مستقيماً توليد مي شود و بنابراين در هزينه مصرف انرژي صرفه جويي مي شود و از حرارت نيز كاسته مي شود. 

۵- سيگنال هاي صحت ولتاژ (قدرت مطلوب): پس از روشن شدن سيستم، منبع تغذيه به مقداري زمان احتياج دارد تا به سطح ولتاژ مفيد و مطلوب برسد و اگر سيستم شروع به كار كند و منبع تغذيه بعد از آن به كار افتد اتفاقات بدي رخ خواهد داد. 

اتصالات مربوط به شبكه و اينترنت


- مودم هاي كابلي ( Modem Cable ):
براي ارتباط با اينترنت از طريق سيستم تلويزيون به كار مي رود. 

- مودم هاي : vdsl ) Very high bit-rate DSL )
در اين نوع ارتباط از فيبر نوري استفاده مي شود. 

- مودم هاي : DSL ) Digital Subscriber Line )

يك نوع ارتباط با سرعت بالا از طريق خطوط تلفن برقرار مي شود.

انواع پورت ها


- موازي ( Parallel ) : 
اين نوع اتصال عموماً براي چاپگرها به كار مي رود. 

- سريال ( Seriall) :
اين نوع پورت هاي جهت اتصال دستگاه هايي مانند مودم خارج يه كار مي رود. 

- پورت Universal Serial BUS ) USB )
اين نوع اتصال نيز براي اتصال دستگاههاي مانند اسكنر و يا دوربين هاي ديجيتالي و يا وب ا ستفاده مي شود. 

ابزارهاي قابل حمل جهت ذخيره سازي ( Removable Storage )


با استفاده از اين ابزارها مي توان اطلاعات را به رايانه اضافه نمود و يا آنها را ذخيره كرده و به محل ديگر برد. 

- Flash Memory 
يكنوع حافظه است ( EEPROM یا E2PROM ) كه امكان ذخيره سازي دائم را به وجود مي آورد. مانند كارت هاي PCMCIA كه داراي سرعت بالايي مي باشند. 

- فلاپي ديسك ( Floppy Disk )
جهت ذخيره اطلاعات بكار مي رود و حجم آن ۴۴/۱ مگابايت است. 

- CDROM 
ديسك هاي فشرده رايج هستند كه حجم آنها از ۶۵۰ مگا بايت به بالاست و براي ذخيره و جابه جايي اطلاعات مي باشد. 

- Digital Versatile Disc) DVDROM 
اين نوع رسانه مانند CD مي باشد كه با اين تفاوت كه داراي حجم بسيار بالا و كيفيت فوق العاده باشد. 
نكته: البته رسانه هاي ديگري نيز مانند Optical Drive، ديسك هاي بزرگ معروف به درايو B و Tape Backup و ساير موارد نيز وجود داشته اند كه در حال حاضر با آمدن CD و DVD و رسانه اي بسيار حرفه اي تر غير قابل استفاده شده اند. 

ورودي ها و خروجي ها




- مانيتور ( Monitor ):
جهت نمايش اطلاعات رايانه به كار مي رود. نمايش تصاوير از تركيب سه رنگ قرمز، سبز و آبي بوجود مي آيد. 

- صفحه كليد ( Key Board ):
براي ورود اطلاعات به كار مي رود. 

- ماوس Mouse :
بهترين وسيله جهت نشان دادن و انتخاب نمودن گزينه ها و ايجاد ارتباط كاربر با رايانه مي باشد. 

- اسپيكرها:
جهت پخش صدا به كار مي روند. 


 

قسمت هاي اصلي يك کامپیوتر



CPU يا پردازنده:
اين قطعه به عنوان مغز رايانه ناميده مي شود و مسئوليت كنترل تمام محاسبات، عمليات و قسمت هاي مختلف را بر عهده دارد. 

حافظه:
حافظه رايانه براي ذخيره اطلاعات به كار مي رود. حافظه با ريزپردازنده در ارتباط مي باشد، بنابر اين از سرعت بالايي برخوردار است. در رايانه از چندين نوع حافظه استفاده مي شود:Virtual - Caching - BIOS - ROM - RAM
البته لازم به ذکر است که Virtual - Caching - BIOS کاربردهای حافظه هستند و گرنه خود حافظه به دو نوع ROM و RAM تقسیم می شود

- منبع تغذيه يا Power Supply :
اين قسمت از رايانه جريان الكتريكي مورد نياز در رايانه را تنظيم نموده و مقدار آن راتأمين مي كند. 

- هارديسك:
يك حافظه با ظرفيت بالا و دائم مي باشد كه اطلاعات و برنامه ها را دربرمي گيرد. 

- برد اصلي يا Mother Board :
برد اصلي رايانه است كه تمام قطعات بر روي آن نصب مي شوند. پردازشگر و حافظه به طور مستقيم بر روي برد اصلي نصب خواهند شد. ولي ممكن است بعضي از قطعات به صورت غيرمستقيم به برد وصل شوند. مانند كارت صدا كه مي تواند به صورت يك برد مجزا باشد و از طريق اسلات به برد اصلي متصل است. 

- كارت صدا يا Sound Card :
كارت صدا سينگال هاي آنالوگ صوتي را به اطلاعات ديجيتال و برعكس تبديل مي كند و آنها را ضبط و پخش مي كند.

- كارت گرافيكي يا Graphic Cards :
اطلاعات را به گونه اي تبديل مي كند كه قابل نمايش بر روي مانيتور باشد. 

- كنترل كننده Integrated Drive Electronics ) IDE ) :
اين قطعه اينترفيس اوليه براي CD ROM، فلاپي ديسك و هارد مي باشد. 

- اينترفيس SCSI) Small Computer ) :
براي اضافه نمودن دستگاه هاي اضافي مانند هارد و اسكنر مي باشد. 

- گذرگاه Interconnect PeriPheral Component ) PCI) :
اين قطعه رايج ترين شيوه جهت اتصال يك عنصر ديگر به رايانه است كارت هاي PCI از طريق اسلات ها به برد اصلي متصل است. 

- پورت Accelerated Graphics Port ) AGP ) :
اين قطعه براي اتصال سرعت بالا از كارت گرافيكي به رايانه است. 

 
  BLOGFA.COM